Digital Logic Circuits

Sequential Logic

CS-173 Fundamentals of Digital Systems

Mirjana Stojilovic

FUNDAMENTAL Io Spring 2025

SYSTEMS

https://mirjanastojilovic.github.io/cs173/index.html

Previously on FDS

Transistors, CMOS logic gates,
real gate behavior, dynamic operation,
dynamic power dissipation

CS-173, © EPFL, Spring 2025

Previously

= Discovered NMOS and PMOS transistors
from which real logic gates are built
« CMOS examples (NOT, NOR, NAND, AND)

= |deal vs. real gates
« On-resistance and gate capacitance
 Rise and fall times
» Fan-in and fan-out
* Propagation delays

= Unexpected transitions (hazards)
* Dynamic power consumption

CS-173, © EPFL, Spring 2025

Let’'s Talk About...

..Sequential logic

CS-173, © EPFL, Spring 2025

Learning Outcomes A

= Discover memory elements o
. Latches %
 Flip-flops

= Use a behavioral modeling approach to describe them

= Understand the difference between blocking and nonblocking
assignments

« Write always@ blocks correctly, depending on what they are supposed
to describe: combinational or sequential circuits

Quick Outline

» Memory elements
« Combinational vs. sequential
« Sequential circuits

Basic memory element

= \Verilog, contd.
 Blocking assignments
« Nonblocking assignments

« SR latch = Behavioral latch and FF

« D latch models

» D flip-flop = Practically useful notes
= Clock « Avoid latches

 Beware, latches can sneak in

CS-173, © EPFL, Spring 2025

Memory Elements \

» Logic circuits that can store information

CS-173, © EPFL, Spring 2025

Example Application: Alarm System Control

= Suppose we wish to control an alarm system

SET
SENSOR > ALARM ALARM ON ALARM
CONTROL S

RESET > CIRCUIT

= ALARM_ON =1, the alarm is activated: ALARM_ON = 0, the alarm is deactivated

= When the sensor generates a positive voltage signal (SET = 1) in response to some undesirable event,
ALARM_ON becomes 1. Once the alarm is triggered, it must remain active even if the sensor output
returns to zero. The alarm is turned off by means of a RESET input. The circuit requires
a memory element to remember that the alarm has to be active until the RESET signal arrives.

Combinational vs. Sequential

= Previously, we considered circuits where the value of each output
depends solely and almost instantaneously on the values of
signals applied to the inputs
» Referred to as combinational circuits

= There exists another class of logic circuits in which the values of
the outputs depend not only on the present values of the inputs
but also on the past behavior of the circuit
« Contain memory elements
» Referred to as sequential circuits

CS-173, © EPFL, Spring 2025

Combinational vs. Sequential

Contd.

= Combinational circuits
are memoryless:

« Qutputs depend only
on the present inputs

—p —
— . . —
Combinational
o Outputs
Inputs Circuit : P
— —

CS-173, © EPFL, Spring 2025

= Sequential circuits
have memory:

» Qutputs depend on the present
and the previous inputs

— —
— o —
Sequential

. Outputs
Inputs Circuit : P
r - =) —I—P
| |
| |
L e e e e e e e e = - =

10

Sequential Circuits

= Include storage elements (memory elements) to store
(i.e., memorize) the values of logic signals

= The contents of the storage elements are the state of the circuit

= When the inputs change, the new input values either leave the
circuit in the same state or cause it to change to a new state

= OQver time, the circuit changes through a sequence of states
as a result of changes in the inputs

CS-173, © EPFL, Spring 2025 11

Basic Memory Element

Bistable Element

= [nverters with outputs connected to inputs

6< 4[>(£

= Not very practical: stores a “given’ value indefinitely
= How to update the stored value? We need additional inputs

- O

DQDE M 4[>£ 7NN\

o - 0

Memory Elements \

e Latches

CS-173, © EPFL, Spring 2025

Basic Memory Element

Set-Reset Latch with Reset Priority

» A memory element = Atable describing a sequential
with NOR gates circuit behavior is called
= Both NORs act as inverters a characteristic table
in a bistable memory element * How the next state changes
in the function of the inputs
R . and the previous state
S R Qext
S 0 0
0 1
1 , |f&RQ
1 1

A State of a Latch

Definition

= Depending on the value of the output Q, a latch can be in one of
the two states (S):

«50:Q=0
¢« ST:Q =1

Note: State names SO and ST are chosen arbitrarily
= A state is a property of a memory element
= State is defined by the logic value kept by the memory element (Q)

CS-173, © EPFL, Spring 2025 15

Set-Reset Latch with Reset Priority

Basic Memory Element, Contd.

» Called Set-Reset Latch

Qb
D

Set-Reset Latch with Reset Priority

Basic Memory Element, Contd.

= Called Set-Reset Latch » Assume initially Q, =0, Q, =1
= R inactive (zero):
R * When S becomes 1:
A7 » Q, becomes 0, and Q, becomes 1
S Q, « While Sis O:
« Q,and Q, are complements

of one another

« Circuit state does not change
(it is stable)

Set-Reset Latch with Reset Priority

Basic Memory Element, Contd.

= Called Set-Reset Latch » Assume initially Q, =0, Q, =1
= S inactive (zero):
R » When R becomes 1
A7 « Q, becomes 0, and Q, becomes 1
S Q, « While R is O:
« Q,and Q, are complements

of one another

« Circuit state does not change
(it is stable)

Set-Reset Latch with Reset Priority

Basic Memory Element, Contd.

» Called Set-Reset Latch

e

» Assume initially Q, =0, Q, =1

s [f both S and R are active
« Q, and Q, become 0, both

Set-Reset Latch with Reset Priority

Basic Memory Element, Contd.

R
S Q,
Qb:S+Qa
Qa,neazt :R_I_Qb
::j%' 09'+'62a)
=R-S+R-Q,=

anemt

S R R-S R-Q,| Quext Qb newt
0 0 0 Qe | Qa Q.

0 T 0 0 0 T

T 0 1 Q. 1 0

1 T 0 0 0 0

= R active: Output Q, is reset

= S active: Output Q, is 0

« If Rinactive: Output Q, is set

= R and S inactive: Outputs constant

Note: We try to avoid activating both R and S

Set-Reset Latch with Set Priority

» The latch we saw was an SR latch with Reset priority
« |f both S and R are active, the reset “wins” (has higher priority)

» Below is an SR latch with a Set priority. Describe its operation.

S —>O | S R R- Qa Qa,nemt Qb,nefct
}— 1= 0 0 [Q | Q. Qu
0 1 0 0 1
R —>O— Q,
Jo—2- 1 0 0. | 1 0
1 1 0 1 1

Qanest =5+ 1 Qa Note: We try to avoid activating both R and S

CS-173, © EPFL, Spring 2025 22

CS-173, © EPFL, Spring 2025

23

Latches with A Control Signal

= |[n practice, we want to be able to control when state changes occur
To that purpose, we add a control signal
* When active, it enables the latch to operate normally
 When inactive, it prevents state updates

= A variety of latches exist, e.qg., D latch (see next slide)

CS-173, © EPFL, Spring 2025

24

D Latch

= Schematic symbol
o Left:inputs D and C
« Right: complementary outputs

= Level-sensitive element

= While the controlling signal C
s active (high level), the
output Q follows all changes
taking place on input D

= At all other times, the output Q 2
stays unchanged (keeps its
last value)

D Latch — Timing Diagram —D Q-

Example

= For the given signals C and D,
draw the output Q waveform

to 11 to 3 ly ts5 te 17
@
T
=
% C___
Q
Undefined)
(Uhknhown)
d

CS-173, © EPFL, Spring 2025

input-to-output delay
(propagation delay)

» The signal at C input is active
(logic ‘1) in time intervals

(toth), (t2 ta), (ta 1s), (1, 17)
 Output Q follows input D

= The signal at C input is inactive
(logic ‘0’), in time intervals

(- to), (k). (ta, 1), (s, 1), (87,)

« Qutput Q keeps its last value
(stays constant, unchanged)

26

Memory Elements \
* Flip-flops

CS-173, © EPFL, Spring 2025

Flip-Flops

= D latch may change its state many times while the control
signal is active; in practice, limiting the duration of time when
the state changes can occur is very desirable

« Also, we want to memorize (keep) a state for a while and not allow it to
change an unlimited number of times while the control signal is active

= The circuit could be allowed to change the state only when
the control signal transitions (e.g., rising or falling edge)
« Such circuits are called flip-flops

D Flip-Flop
P = Graphical symbols
* DFF sensitive to

= D flip-flop is an edge-sensitive the rising edge
memory element
* |t responds to the changes —1Ip ql-
at the input D only when _
the controlling signal C transitions - Q—

(rising edge or falling edge)
* DFF sensitive to

= Flip-flop is called an FF, in short the falling edge

—D Q_
—op Q—

D Flip-Flop — Timing Diagram —_o o

Example _

= For the given signals C and D,
draw the output Q waveform

o to 1 lo 13 ta U5 te tr
: = The signal at the control input
% C__ changes from ‘0" to "1’ (rising
edge) at times t,, t,, t,, and t,
D | « Output Q changes, taking input D
* = At any other moment
9 « Qutput Q keeps its last value
ondenned (stays constant, unchanged)
d

CS-173, © EPFL, Spring 2025 input-to-output delay 30
(propagation delay)

A State of a FF

Definition

= Depending on the value of the output Q, a DFF can be in one of
the two states (S):

« 50:Q=0
e 51:Q =1 —D Q—
Note: State names SO and S1 are chosen arbitrarily b Q |

= A state is a property of a memory element
(e.g., a latch, a FF)

= State is defined by the logic value kept by the memory element (Q)

CS-173, © EPFL, Spring 2025 31

CS-173, © EPFL, Spring 2025

32

Clockﬂp Yy /

CS-173, © EPFL, Spring 2025

4

Clock Signal

= Signal determining when the state changes occur is called clock

= Clock is a periodic signal defined by its frequency (or period)
and duty ratio (typically 50%)

« Example frequency: 100 MHz, 3.3 GHz, 1 kHz —D Q-
« Example period: 10 ns, 0.33 ns, 1 ms

Clock (or CLK, or C) — QH

= All digital systems use clocks to synchronize state changes
 Typically, state changes are triggered by a rising edge of the clock

CS-173, © EPFL, Spring 2025

34

4

Clock Signal

» Clock: A periodic signal determining when the memory
elements in a sequential logic circuit update their outputs

= Defined by its frequency f (or period T) and duty ratio
(typically 50%)

Falling Rising
th]gh edge edge

DR e e m i

Tcrk, clock period

Level

thigh

duty ratio = T

1
— f, clock frequenc
Torr f q y

CS-173, © EPFL, Spring 2025 35

Note: Special circuits are used to generate clocks of desired frequencies.

Synchronous vs. Asynchronous Signals

= A synchronous signal is one that is evaluated and updated only
on the active edge (rising or falling) of the clock
« Example: D (data) input
 Active clock edge is the edge that triggers the state change
(can be rising, or falling)

= An asynchronous signal is one that immediately affects
the output (the state) regardless of the clock edge
* |t forces the output to a specific state, independent of the clock

CS-173, © EPFL, Spring 2025 36

Other Control Signals FFs Can Have

= Flip flops can have a variety of inputs, besides data (D) and clock (C)

= Clear (or reset, CLR)

« Asynchronous clear: When active, irrespective of the clock, the Q output is cleared

 Synchronous clear: \When the clock transitions (e.g., rising edge), if the clear is active,
the Q output is cleared

= Preset (or set) Q
* The opposite effect of the clear Q 5 B
= Clock Enable (CE))
 Typically synchronous: when the clock input transitions ©_> Q—

(e.g., rising edge), if CE is active, the Q output becomes D é

CS-173, © EPFL, Spring 2025

38

Verilog, Contd.

* Blocking assignments

CS-173, © EPFL, Spring 2025

= (Blocking) Assignments

In Verilog

= Blocking (=) assignments ensure immediate updates;
They are best for combinational logic

= Blocking assignments happen sequentially

= [f an always@ block contains multiple blocking (=) assignments,
they are evaluated one after another in the current simulation
step (simulation cycle)

Simulation Execution Flow

With Blocking Assignments

= For the Verilog model at the right, assume
the following sequence at the inputs
A/C/E/D during simulation steps (cycles):

« Step 0, initial state:
A=B=C=D=E=F=0

EXAMPLES

« StepT:A=1 always @ (*)
' begin
e Step2:.C =1 B = ~A; // B depends on A
« Step3:E=1 D=B&C; // D depends on B and C
. L F=E /| D; // F depends on E and D
Step4:A=0 end

= Compute the values of B, D, and F
throughout the simulation cycles

CS-173, © EPFL, Spring 2025

Simulation Execution Flow

= Time step 2 (Change in C):
Contd. P2 (Ehans)
C =1 (Changed from0to 1)

Execution of the always @(*) block:

= Time step 0 (Initial State): . Bremains 0 (already calculated)
o A=0,B=0,C=0,D=0,E=0 - D=B&C=0&1=0
- Execution of the always @(*) block: - F=E[D=0]0=0
o Bz~Az=n0=] = Time step 3 (Change in E):
| =
& D-B&C=180=0 E =1 (Changed from0to 1)
5 Execution of the always @(*) block:
- F=E|ID=0]0=0
" B remains O (already calculated)
= Ti in A):
Time step 1 (Change in A) - YT
o A=1(Changed from0Oto 1) F=E[D=1[0=1
o Execution of the always @(*) block: - Time step 4 (Change in A):
o =~A=~1=0 - A=0(Changed from 1 to 0)
o D=B&C=0&0=0 - Execution of the always @(*) block:
o F=EID=0]0=0 - B=~A=~0=T
D=B&C=1&1=1
CS-173, ® EPFL, Spring 2025 . 42

F=EID=11]1="1

= (Blocking) Assignments

In Verilog

Takeaways
« B/D/F are updated based on the current inputs at each time step

« Each time the inputs A/C/E change, the always@(*) block recalculates
B/D/F in order of the statements

« Notice how the order of assignment matters, as D depends on B (which
was just updated), and F depends on D (which also changes depending
on B and C)

EXAMPLES

CS-173, © EPFL, Spring 2025 43

always@(*) Blocks

In Verilog

= Most often used to describe combinational logic

= Use (*) for the sensitivity list of the combinational circuit

* You want your outputs to trigger on a change of any relevant input

« Use only always@(*) block when wanting to infer elements that
change value as soon as one or more of the inputs change

= Use only = (blocking) assignments in combinational circuits

CS-173, © EPFL, Spring 2025 44

Verilog, Contd.

« Nonblocking assignments

CS-173, © EPFL, Spring 2025

<= (Nonblocking) Assignments

In Verilog

= Nonblocking assignments (<=) cause all assignments in
the always block to occur in parallel, without affecting each
other in the current simulation time step

= Nonblocking (<=) assignments are used to model sequential
logic behavior

(7]
w
—
o
=
<
>
]

Simulation Execution Flow

With Nonblocking Assignments

= For the Verilog model at the right,
assume the following sequence at
the inputs A/C/E/D during simulation
steps (cycles):
« Step O, initial state:
A=B=D=0;C=E=F=1

e Step T:A=1
e Step2:C=0
e Step 3:E=0
e Step4:A=0

= Compute the values of B, D, and F
throughout the simulation cycles

CS-173, © EPFL, Spring 2025

@ (*)

~A; // B depends on A

B & C; // D depends on B and C
E | D; // F depends on E and D

Hint: Given the nonblocking assignments,
B, D, and F will all be updated in the next
time step after all the expressions in the

always block are evaluated, in parallel.

47

(7]
w
—
o
=
<
>
]

Simulation Execution Flow

With Nonblocking Assignments

= Time step 0 (Initial State):
« Before execution:A=0,B=0,C=1,D=0,E=1,F=1
 Evaluating nonblocking assignments (using old values):

e B<=~A=~0=1 always
+ D<=B&C=0&1=0 begin
« F<=E[D=1/0=1 i
» Afterupdate:B=1,D=0F=1 F <=
= Time step 1 (Change in A, A becomes 1): end

« Before execution:A=1,B=1,C=1,D=0,E=1,F=1

« Evaluating nonblocking assignments (using old values):
e B<=~A=~1=0
e D<=B&C=1T&1="1
s F<=E|D=1]0=1

o Afterupdate:B=0,D=1,F=1

B depends on A
D depends on B and C
F depends on E and D

48

(7]
w
—
o
=
<
>
]

Simulation Execution Flow

With Nonblocking Assignments, Contd.

= Time step 2 (Change in C, C becomes 0):
« Before execution:A=1,B=0,C=0,D=1,E=1,F=1
 Evaluating nonblocking assignments (using old values):

e B<=~A=~7=0 always
« D<=B&C=0&0=0 begin
¢« F<=E[D=1]1=1 i
 Afterupdate:B=0,D=0,F =1 F <=
= Time step 3 (Change in E, E becomes 0): end

« Before execution:A=1,B=0,C=0,D=0,E=0,F=1

« Evaluating non-blocking assignments (using old values):
e B<=~A=~1=0
e« D<=B&C=0&0=0
+ F<=E|D=0/0=0

« Afterupdate:B=0,D=0,F=0

B depends on A
D depends on B and C
F depends on E and D

49

(7]
w
—
o
=
<
>
]

Simulation Execution Flow

With Nonblocking Assignments, Contd.

= Time step 4 (Change in A, A becomes 0):
« Before execution:A=0,B=0,C=0,D=0,E=0,F=0
« Evaluating non-blocking assignments (using old values):

s B<=~A=~0="1 always

-« D<=B&C=08&0=0 begin

« F<=E|D=0]0=0 gz:
« Afterupdate:B=1,D=0,F=0 F <=

B depends on A
D depends on B and C
F depends on E and D

50

(7]
w
—
o
=
<
>
]

<= (Nonblocking) Assignments

In Verilog

Takeaways

* The nonblocking assignments ensure that each signal B/D/F in our
example is updated in parallel at the next simulation time step, and that
they don't affect each other within the same simulation time step

« Changes in A/C/E propagate through B/D/F, but only at the next
simulation time step, which allows for parallel evaluation and update of
all signals

CS-173, © EPFL, Spring 2025

51

CS-173, © EPFL, Spring 2025

52

Behavioral Latch and
Flip-Flop Models

Modeling Latches and FFs in Verilog

= | atches and FFs are typically specified via behavioral modeling

= \Verilog compilers are designed to recognize very specific
patterns for these behaviors, and the synthesis tools will infer
the appropriate component

Basic D Latch

Behavioral Model

module Dlatch (
input D,
input C,
output reg Q
)

always @ (*)
begin
if (C == 1)
Q <= D;
end

endmodule

CS-173, © EPFL, Spring 2025

= The output may be affected
whenever inputs D or C change

Hence, full sensitivity list: always @ (*)

= Note: the if statement does not
have a corresponding else clause

* On purpose! Omitting the else clause
means that we want to infer a latch
The Verilog simulator recognizes that
Q should not change if Cis 0; as a
result, a latch is inferred

» Equivalent to adding a redundant
else Q <= Qclause

55

D Latch w/ Enable (CE) and Reset (CLR)

Behavioral Model

module Dlatch (= The output may be affected
input D, .
input C. whenever inputs D, C, CE, and CLR
input CE, change
input CLR, Hence, full sensitivity list: always @ (*)
output reg Q When asserted, CLR overrides other
) inputs
« C and CE inputs have equivalent
1 * .
Ze‘;iﬁs @ (*) functions — they are ANDed to open
if (CLR == 1) the latch
Q <= 0; :
else if ((C == 1) 88 (CE == 1)) " The if statement does not have a
Q <= D; corresponding else clause,
end on purpose for the latch

endmodule

always @ (posedge Clock)

In Verilog

= Used to describe sequential logic containing flip-flops (FFs)
 always @ (posedge Clock) — always at the rising clock edge
« always @ (negedge Clock) - always at the falling clock edge

= Only <= (nonblocking) assignments should be used
 Never use = (blocking) assignments

 Recall that the logic symbol for an FF
has a little wedge on the clock input.
Have that remind you to use <= operator! —p Q—

CS-173, © EPFL, Spring 2025 57

Positive-Edge-Triggered DFF —b o

Behavioral Model

module Dff (
input D,
input CLK,
output reg Q
E

always @ (posedge CLK)
begin

Q <= D;
end

endmodule

» The always block is executed
on the positive (rising) CLK edge
« QgetsD

= Nothing happens at other times

* Qs held at the same value at least
until the next positive CLK edge

DFF with Synchronous Reset

Positive-Edge-Triggered, Reset is Active High

module Dff (= On the rising edge of the CLK
input D, s
input ELK, » Clear (reset) signal is evaluated
input CLR, « If high, output is cleared (zero)

output reg Q

s » Else, the output is unchanged

« Here, reset is active when high

always @ (posedge CLK) -
if (CLR == 1) . If.vve wanted a negative-edge
Q<0 triggered DFF
else
Q <= D; » Replace posedge CLK

with negedge CLK

endmodule

DFF with Asynchronous Reset

Positive-Edge-Triggered, Reset is Active High

module Dff (

input D, T :
input CLK, = The sensitivity list now includes
i"zuttCLR: the reset input CLR
output re . ..
) P 8 ¢ « Whenever CLR is to be asserted (rising),
the always block executes, and the if
always @ (posedge CLK or posedge CLR) statement clears the Q output and exits
begi" * |f the always block is executing and CLR
if (CLR == 1) was not asserted, then it must be
Q <= 0; executing because a positive edge
else
0 <= D; occurred on CLK, and therefore,
end Q takes D

endmodule

DFF with Asynchronous Reset

Positive-Edge-Triggered, Reset is Active High

module Dff (
input D,
input CLK,
input CLR,
output reg Q
)

always @ (posedge CLK or posedge CLR)

begin
if (CLR ==
Q <= 0;
else
Q <= D;
end

endmodule

1)

= Why posedge CLR?

= |t would be a mistake to omit
posedge and execute always block
on any change in CLR

* Problem: On a "1-to-'0" transition on
CLR, the else clause would execute
and set Q to D even though no CLK
edge had occurred

DFF with Asynchronous Reset and ~Q Output

Positive-Edge-Triggered, Reset is Active High, Contd.

module Dff (
input D, CLK, CLR,
output reg Q, ON
)

always @ (posedge CLK or posedge CLR)
begin = Two FF outputs
if (CLR == 1) begin _
Q(<= 9) beg » Original, Q
QN <= 1; // complementary output « Complementary (negated)
end
else begin
Q <= D;
ON <= ~D; // complementary output
end
end
endmodule

= Asynchronous reset

CS-173, © EPFL, Spring 2025

63

Practically Useful Notes

CS-173, © EPFL, Spring 2025

Avoid Latches

= For practical sequential systems, avoid latches
« Latches are sensitive to glitches (hazards)
 Latch outputs can oscillate

« Latches are level (not edge!) sensitive and may change
output many times during one clock period

= Use only D flip-flops and combinational logic

* Write independent always blocks
« Some dedicated to D flip-flops (keep them extremely simple)
« Some dedicated to combinational logic (as complex as needed)

CS-173, © EPFL, Spring 2025

Beware, Latches can Sneak In

= To avoid latches to sneak in in your combinational
circuits, make sure to assign every wire that
can be assigned inside your always@(*) block

= Recommended practice:

o Start your always@(*) block with the initialization of all
wires to some default logic values to ensure they all
take a value (1 or 0) regardless of the code that follows

« Only afterward proceed with your desired assignments

Nonblocking Assignments

= Always use nonblocking assignments in sequential
always blocks (nonblocking assignment operator <=)

« Why?

In models with multiple sequential always blocks using blocking
assignments, the simulation results can vary depending on the order
in which the simulator chooses to execute those blocks. Using
nonblocking assignments ensures that the righthand sides of all
assignments are evaluated before new values are assigned to any of
the lefthand sides. This makes the results independent of the order in
which the righthand sides are evaluated

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025

68

Literature

DIGITAL LOGIC

with Verilog Design

 DIGIIZAL

= Chapter 5: Fli-flops, Registers, and = Chapter 10: Latches and Flip-Flops in Verilog
Counters = 10.3.2,10.4.2
= 51-4,512,513

= Verilog: always@ Blocks by Chris Fletcher:
https://inst.eecs.berkeley.edu/~eecs151/fa19/files/verilog/always_at_blocks.pdf

CS-173, © EPFL, Spring 2025

69

https://inst.eecs.berkeley.edu/~eecs151/fa19/files/verilog/always_at_blocks.pdf

