
Digital Logic Circuits
Sequential Logic

CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

Spring 2025

https://mirjanastojilovic.github.io/cs173/index.html

Previously on FDS
Transistors, CMOS logic gates,
real gate behavior, dynamic operation,
dynamic power dissipation

2CS-173, © EPFL, Spring 2025

3

Previously

▪ Discovered NMOS and PMOS transistors
from which real logic gates are built
• CMOS examples (NOT, NOR, NAND, AND)

▪ Ideal vs. real gates
• On-resistance and gate capacitance

• Rise and fall times

• Fan-in and fan-out

• Propagation delays

▪ Unexpected transitions (hazards)

▪ Dynamic power consumption
CS-173, © EPFL, Spring 2025

Let’s Talk About…
…Sequential logic

4CS-173, © EPFL, Spring 2025

5

Learning Outcomes

▪ Discover memory elements
• Latches

• Flip-flops

▪ Use a behavioral modeling approach to describe them

▪ Understand the difference between blocking and nonblocking
assignments
• Write always@ blocks correctly, depending on what they are supposed

to describe: combinational or sequential circuits

CS-173, © EPFL, Spring 2025

Quick Outline

▪ Memory elements
• Combinational vs. sequential

• Sequential circuits

• Basic memory element

• SR latch

• D latch

• D flip-flop

▪ Clock

▪ Verilog, contd.
• Blocking assignments

• Nonblocking assignments

▪ Behavioral latch and FF
models

▪ Practically useful notes
• Avoid latches

• Beware, latches can sneak in

6CS-173, © EPFL, Spring 2025

Memory Elements
• Logic circuits that can store information

7CS-173, © EPFL, Spring 2025

8

Example Application: Alarm System Control

▪ Suppose we wish to control an alarm system

▪ ALARM_ON = 1, the alarm is activated; ALARM_ON = 0, the alarm is deactivated

▪ When the sensor generates a positive voltage signal (SET = 1) in response to some undesirable event,
ALARM_ON becomes 1. Once the alarm is triggered, it must remain active even if the sensor output
returns to zero. The alarm is turned off by means of a RESET input. The circuit requires
a memory element to remember that the alarm has to be active until the RESET signal arrives.

CS-173, © EPFL, Spring 2025

ALARMSENSOR ALARM
CONTROL
CIRCUIT

ALARM_ON
SET

RESET

9

Combinational vs. Sequential

▪ Previously, we considered circuits where the value of each output
depends solely and almost instantaneously on the values of
signals applied to the inputs
• Referred to as combinational circuits

▪ There exists another class of logic circuits in which the values of
the outputs depend not only on the present values of the inputs
but also on the past behavior of the circuit
• Contain memory elements

• Referred to as sequential circuits

CS-173, © EPFL, Spring 2025

Combinational vs. Sequential
Contd.

▪ Combinational circuits
are memoryless:
• Outputs depend only

on the present inputs

▪ Sequential circuits
have memory:
• Outputs depend on the present

and the previous inputs

10CS-173, © EPFL, Spring 2025

… Combinational
Circuit

Inputs … Outputs … Sequential
Circuit

Inputs … Outputs

11

Sequential Circuits

▪ Include storage elements (memory elements) to store
(i.e., memorize) the values of logic signals

▪ The contents of the storage elements are the state of the circuit

▪ When the inputs change, the new input values either leave the
circuit in the same state or cause it to change to a new state

▪ Over time, the circuit changes through a sequence of states
as a result of changes in the inputs

CS-173, © EPFL, Spring 2025

12

Basic Memory Element
Bistable Element

▪ Inverters with outputs connected to inputs

▪ Not very practical: stores a “given” value indefinitely

▪ How to update the stored value? We need additional inputs

CS-173, © EPFL, Spring 2025

Q Q
Q

Q Q

Q

0 1

1 0

QQ

Memory Elements
• Latches

13CS-173, © EPFL, Spring 2025

Basic Memory Element
Set-Reset Latch with Reset Priority

▪ A memory element
with NOR gates

▪ Both NORs act as inverters
in a bistable memory element

▪ A table describing a sequential
circuit behavior is called
a characteristic table
• How the next state changes

in the function of the inputs
and the previous state

14CS-173, © EPFL, Spring 2025

R

S
S R Qnext

0 0

f(S, R, Q)
0 1

1 0

1 1

Q

A State of a Latch
Definition

▪ Depending on the value of the output Q, a latch can be in one of
the two states (S):
• S0: Q = 0

• S1: Q = 1

▪ A state is a property of a memory element

▪ State is defined by the logic value kept by the memory element (Q)

15CS-173, © EPFL, Spring 2025

Note: State names S0 and S1 are chosen arbitrarily

16

Set-Reset Latch with Reset Priority
Basic Memory Element, Contd.

▪ Called Set-Reset Latch

CS-173, © EPFL, Spring 2025

R

S

Q = Qa

Qb

Set-Reset Latch with Reset Priority
Basic Memory Element, Contd.

▪ Called Set-Reset Latch ▪ Assume initially Qa = 0, Qb = 1

▪ R inactive (zero):
• When S becomes 1:

• Qb becomes 0, and Qa becomes 1

• While S is 0:
• Qa and Qb are complements

of one another

• Circuit state does not change
(it is stable)

17CS-173, © EPFL, Spring 2025

R

S

Q = Qa

Qb

Set-Reset Latch with Reset Priority
Basic Memory Element, Contd.

▪ Called Set-Reset Latch ▪ Assume initially Qa = 0, Qb = 1

▪ S inactive (zero):
• When R becomes 1:

• Qa becomes 0, and Qb becomes 1

• While R is 0:
• Qa and Qb are complements

of one another

• Circuit state does not change
(it is stable)

18CS-173, © EPFL, Spring 2025

R

S

Q = Qa

Qb

Set-Reset Latch with Reset Priority
Basic Memory Element, Contd.

▪ Called Set-Reset Latch ▪ Assume initially Qa = 0, Qb = 1

▪ If both S and R are active
• Qa and Qb become 0, both

19CS-173, © EPFL, Spring 2025

R

S

Q = Qa

Qb

Set-Reset Latch with Reset Priority
Basic Memory Element, Contd.

▪ R active: Output Qa is reset

▪ S active: Output Qb is `0`
• If R inactive: Output Qa is set

▪ R and S inactive: Outputs constant

21CS-173, © EPFL, Spring 2025

0 0 0

0 1 0 0 0 1

1 0 1 1 0

1 1 0 0 0 0

R

S

Q = Qa

Qb

Note: We try to avoid activating both R and S

0 0

0 1 0 0 1

1 0 1 0

1 1 0 1 1

22

Set-Reset Latch with Set Priority

▪ The latch we saw was an SR latch with Reset priority
• If both S and R are active, the reset “wins” (has higher priority)

▪ Below is an SR latch with a Set priority. Describe its operation.

CS-173, © EPFL, Spring 2025

S

R

Q = Qa

Qb

Note: We try to avoid activating both R and S

CS-173, © EPFL, Spring 2025 23

24

Latches with A Control Signal

▪ In practice, we want to be able to control when state changes occur
To that purpose, we add a control signal
• When active, it enables the latch to operate normally

• When inactive, it prevents state updates

▪ A variety of latches exist, e.g., D latch (see next slide)

CS-173, © EPFL, Spring 2025

D Latch

▪ Level-sensitive element

▪ While the controlling signal C
is active (high level), the
output Q follows all changes
taking place on input D

▪ At all other times, the output Q
stays unchanged (keeps its
last value)

▪ Schematic symbol
• Left: inputs D and C

• Right: complementary outputs

25CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

26

D Latch – Timing Diagram
Example

▪ The signal at C input is active
(logic ‘1’) in time intervals
(t0,t1), (t2, t3), (t4, t5), (t6, t7)
• Output Q follows input D

▪ The signal at C input is inactive
(logic ‘0’), in time intervals
(…, t0), (t1,t2), (t3, t4), (t5, t6), (t7, …)
• Output Q keeps its last value

(stays constant, unchanged)

CS-173, © EPFL, Spring 2025

Undefined
(unknown)

C

D

Q

▪ For the given signals C and D,
draw the output Q waveform

input-to-output delay
(propagation delay)

Memory Elements
• Flip-flops

27CS-173, © EPFL, Spring 2025

28

Flip-Flops

▪ D latch may change its state many times while the control
signal is active; in practice, limiting the duration of time when
the state changes can occur is very desirable
• Also, we want to memorize (keep) a state for a while and not allow it to

change an unlimited number of times while the control signal is active

▪ The circuit could be allowed to change the state only when
the control signal transitions (e.g., rising or falling edge)
• Such circuits are called flip-flops

CS-173, © EPFL, Spring 2025

D Flip-Flop

▪ D flip-flop is an edge-sensitive
memory element
• It responds to the changes

at the input D only when
the controlling signal C transitions
(rising edge or falling edge)

▪ Flip-flop is called an FF, in short

▪ Graphical symbols
• DFF sensitive to

the rising edge

• DFF sensitive to
the falling edge

29CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

30

D Flip-Flop – Timing Diagram
Example

▪ The signal at the control input
changes from ‘0’ to ‘1’ (rising
edge) at times t0, t2, t4, and t6

• Output Q changes, taking input D

▪ At any other moment
• Output Q keeps its last value

(stays constant, unchanged)

CS-173, © EPFL, Spring 2025

Undefined
(unknown)

C

D

Q

▪ For the given signals C and D,
draw the output Q waveform

input-to-output delay
(propagation delay)

A State of a FF
Definition

▪ Depending on the value of the output Q, a DFF can be in one of
the two states (S):
• S0: Q = 0

• S1: Q = 1

▪ A state is a property of a memory element
(e.g., a latch, a FF)

▪ State is defined by the logic value kept by the memory element (Q)

31CS-173, © EPFL, Spring 2025

Note: State names S0 and S1 are chosen arbitrarily

CS-173, © EPFL, Spring 2025 32

Clock

33CS-173, © EPFL, Spring 2025

34

Clock Signal

▪ Signal determining when the state changes occur is called clock

▪ Clock is a periodic signal defined by its frequency (or period)
and duty ratio (typically 50%)
• Example frequency: 100 MHz, 3.3 GHz, 1 kHz

• Example period: 10 ns, 0.33 ns, 1 ms

▪ All digital systems use clocks to synchronize state changes
• Typically, state changes are triggered by a rising edge of the clock

CS-173, © EPFL, Spring 2025

 Clock (or CLK, or C)

35

Clock Signal

▪ Clock: A periodic signal determining when the memory
elements in a sequential logic circuit update their outputs

▪ Defined by its frequency (or period) and duty ratio
(typically 50%)

CS-173, © EPFL, Spring 2025

CLK

, clock period

Falling
edge

Rising
edge

, clock frequency

Level

Note: Special circuits are used to generate clocks of desired frequencies.

36

Synchronous vs. Asynchronous Signals

▪ A synchronous signal is one that is evaluated and updated only
on the active edge (rising or falling) of the clock
• Example: D (data) input

• Active clock edge is the edge that triggers the state change
(can be rising, or falling)

▪ An asynchronous signal is one that immediately affects
the output (the state) regardless of the clock edge
• It forces the output to a specific state, independent of the clock

CS-173, © EPFL, Spring 2025

37

Other Control Signals FFs Can Have

▪ Flip flops can have a variety of inputs, besides data (D) and clock (C)

▪ Clear (or reset, CLR)
• Asynchronous clear: When active, irrespective of the clock, the Q output is cleared

• Synchronous clear: When the clock transitions (e.g., rising edge), if the clear is active,
the Q output is cleared

▪ Preset (or set)
• The opposite effect of the clear

▪ Clock Enable (CE)
• Typically synchronous: when the clock input transitions

(e.g., rising edge), if CE is active, the Q output becomes D

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025 38

Verilog, Contd.
• Blocking assignments

39CS-173, © EPFL, Spring 2025

40

= (Blocking) Assignments
In Verilog

▪ Blocking (=) assignments ensure immediate updates;
They are best for combinational logic

▪ Blocking assignments happen sequentially

▪ If an always@ block contains multiple blocking (=) assignments,
they are evaluated one after another in the current simulation
step (simulation cycle)

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

41

Simulation Execution Flow
With Blocking Assignments

CS-173, © EPFL, Spring 2025

always @ (*)
begin
B = ~A; // B depends on A
D = B & C; // D depends on B and C
F = E | D; // F depends on E and D

end

▪ For the Verilog model at the right, assume
the following sequence at the inputs
A/C/E/D during simulation steps (cycles):

• Step 0, initial state:
A = B = C = D = E = F = 0

• Step 1: A = 1

• Step 2: C = 1

• Step 3: E = 1

• Step 4: A = 0

▪ Compute the values of B, D, and F
throughout the simulation cycles

E
X

A
M

P
L

E
S

42

Simulation Execution Flow
Contd.

▪ Time step 0 (Initial State):

o A = 0, B = 0, C = 0, D = 0, E = 0

o Execution of the always @(*) block:

▪ B = ~A = ~0 = 1

▪ D = B & C = 1 & 0 = 0

▪ F = E | D = 0 | 0 = 0

▪ Time step 1 (Change in A):

o A = 1 (Changed from 0 to 1)

o Execution of the always @(*) block:

o B = ~A = ~1 = 0

o D = B & C = 0 & 0 = 0

o F = E | D = 0 | 0 = 0

CS-173, © EPFL, Spring 2025

▪ Time step 2 (Change in C):

• C = 1 (Changed from 0 to 1)

• Execution of the always @(*) block:

• B remains 0 (already calculated)

• D = B & C = 0 & 1 = 0

• F = E | D = 0 | 0 = 0

▪ Time step 3 (Change in E):

• E = 1 (Changed from 0 to 1)

• Execution of the always @(*) block:

• B remains 0 (already calculated)

• D = B & C = 0 & 1 = 0

• F = E | D = 1 | 0 = 1

▪ Time step 4 (Change in A):

• A = 0 (Changed from 1 to 0)

• Execution of the always @(*) block:

• B = ~A = ~0 = 1

• D = B & C = 1 & 1 = 1

• F = E | D = 1 | 1 = 1

E
X

A
M

P
L

E
S

43

= (Blocking) Assignments
In Verilog

Takeaways
• B/D/F are updated based on the current inputs at each time step

• Each time the inputs A/C/E change, the always@(*) block recalculates
B/D/F in order of the statements

• Notice how the order of assignment matters, as D depends on B (which
was just updated), and F depends on D (which also changes depending
on B and C)

CS-173, © EPFL, Spring 2025

44

always@(*) Blocks
In Verilog

▪ Most often used to describe combinational logic

▪ Use (*) for the sensitivity list of the combinational circuit
• You want your outputs to trigger on a change of any relevant input

• Use only always@(*) block when wanting to infer elements that
change value as soon as one or more of the inputs change

▪ Use only = (blocking) assignments in combinational circuits

CS-173, © EPFL, Spring 2025

Verilog, Contd.
• Nonblocking assignments

45CS-173, © EPFL, Spring 2025

46

<= (Nonblocking) Assignments
In Verilog

▪ Nonblocking assignments (<=) cause all assignments in
the always block to occur in parallel, without affecting each
other in the current simulation time step

▪ Nonblocking (<=) assignments are used to model sequential
logic behavior

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

47

Simulation Execution Flow
With Nonblocking Assignments

▪ For the Verilog model at the right,
assume the following sequence at
the inputs A/C/E/D during simulation
steps (cycles):

• Step 0, initial state:
A = B = D = 0; C = E = F = 1

• Step 1: A = 1

• Step 2: C = 0

• Step 3: E = 0

• Step 4: A = 0

▪ Compute the values of B, D, and F
throughout the simulation cycles

CS-173, © EPFL, Spring 2025

Hint: Given the nonblocking assignments,
B, D, and F will all be updated in the next
time step after all the expressions in the

always block are evaluated, in parallel.

always @ (*)
begin
B <= ~A; // B depends on A
D <= B & C; // D depends on B and C
F <= E | D; // F depends on E and D

end

E
X

A
M

P
L

E
S

48

Simulation Execution Flow
With Nonblocking Assignments

▪ Time step 0 (Initial State):

• Before execution: A = 0, B = 0, C = 1, D = 0, E = 1, F = 1

• Evaluating nonblocking assignments (using old values):

• B <= ~A = ~0 = 1

• D <= B & C = 0 & 1 = 0

• F <= E | D = 1 | 0 = 1

• After update: B = 1, D = 0, F = 1

▪ Time step 1 (Change in A, A becomes 1):

• Before execution: A = 1, B = 1, C = 1, D = 0, E = 1, F = 1

• Evaluating nonblocking assignments (using old values):

• B <= ~A = ~1 = 0

• D <= B & C = 1 & 1 = 1

• F <= E | D = 1 | 0 = 1

• After update: B = 0, D = 1, F = 1

always @ (*)
begin
B <= ~A; // B depends on A
D <= B & C; // D depends on B and C
F <= E | D; // F depends on E and D

end

E
X

A
M

P
L

E
S

49

Simulation Execution Flow
With Nonblocking Assignments, Contd.

▪ Time step 2 (Change in C, C becomes 0):

• Before execution: A = 1, B = 0, C = 0, D = 1, E = 1, F = 1

• Evaluating nonblocking assignments (using old values):

• B <= ~A = ~1 = 0

• D <= B & C = 0 & 0 = 0

• F <= E | D = 1 | 1 = 1

• After update: B = 0, D = 0, F = 1

▪ Time step 3 (Change in E, E becomes 0):

• Before execution: A = 1, B = 0, C = 0, D = 0, E = 0, F = 1

• Evaluating non-blocking assignments (using old values):

• B <= ~A = ~1 = 0

• D <= B & C = 0 & 0 = 0

• F <= E | D = 0 | 0 = 0

• After update: B = 0, D = 0, F = 0

always @ (*)
begin
B <= ~A; // B depends on A
D <= B & C; // D depends on B and C
F <= E | D; // F depends on E and D

end

E
X

A
M

P
L

E
S

50

Simulation Execution Flow
With Nonblocking Assignments, Contd.

▪ Time step 4 (Change in A, A becomes 0):

• Before execution: A = 0, B = 0, C = 0, D = 0, E = 0, F = 0

• Evaluating non-blocking assignments (using old values):

• B <= ~A = ~0 = 1

• D <= B & C = 0 & 0 = 0

• F <= E | D = 0 | 0 = 0

• After update: B = 1, D = 0, F = 0

always @ (*)
begin
B <= ~A; // B depends on A
D <= B & C; // D depends on B and C
F <= E | D; // F depends on E and D

end

E
X

A
M

P
L

E
S

51

<= (Nonblocking) Assignments
In Verilog

Takeaways
• The nonblocking assignments ensure that each signal B/D/F in our

example is updated in parallel at the next simulation time step, and that
they don't affect each other within the same simulation time step

• Changes in A/C/E propagate through B/D/F, but only at the next
simulation time step, which allows for parallel evaluation and update of
all signals

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025 52

Behavioral Latch and
Flip-Flop Models

53CS-173, © EPFL, Spring 2025

54

Modeling Latches and FFs in Verilog

▪ Latches and FFs are typically specified via behavioral modeling

▪ Verilog compilers are designed to recognize very specific
patterns for these behaviors, and the synthesis tools will infer
the appropriate component

CS-173, © EPFL, Spring 2025

Basic D Latch
Behavioral Model

▪ The output may be affected
whenever inputs D or C change
Hence, full sensitivity list: always @ (*)

▪ Note: the if statement does not
have a corresponding else clause
• On purpose! Omitting the else clause

means that we want to infer a latch
The Verilog simulator recognizes that
Q should not change if C is 0; as a
result, a latch is inferred

• Equivalent to adding a redundant
else Q <= Q clause

55CS-173, © EPFL, Spring 2025

module Dlatch (
input D,
input C,
output reg Q
);

always @ (*)
begin
if (C == 1)

Q <= D;
end

endmodule

D Latch w/ Enable (CE) and Reset (CLR)
Behavioral Model

▪ The output may be affected
whenever inputs D, C, CE, and CLR
change
Hence, full sensitivity list: always @ (*)

• When asserted, CLR overrides other
inputs

• C and CE inputs have equivalent
functions – they are ANDed to open
the latch

▪ The if statement does not have a
corresponding else clause,
on purpose for the latch

56CS-173, © EPFL, Spring 2025

module Dlatch (
input D,
input C,
input CE,
input CLR,
output reg Q
);

always @ (*)
begin
if (CLR == 1)

Q <= 0;
else if ((C == 1) && (CE == 1))

Q <= D;
end

endmodule

57

always @ (posedge Clock)
In Verilog

▪ Used to describe sequential logic containing flip-flops (FFs)
• always @ (posedge Clock) – always at the rising clock edge

• always @ (negedge Clock) – always at the falling clock edge

▪ Only <= (nonblocking) assignments should be used
• Never use = (blocking) assignments

• Recall that the logic symbol for an FF
has a little wedge on the clock input.
Have that remind you to use <= operator!

CS-173, © EPFL, Spring 2025

Positive-Edge-Triggered DFF
Behavioral Model

▪ The always block is executed
on the positive (rising) CLK edge
• Q gets D

▪ Nothing happens at other times
• Q is held at the same value at least

until the next positive CLK edge

58CS-173, © EPFL, Spring 2025

module Dff (
input D,
input CLK,
output reg Q
);

always @ (posedge CLK)
begin
Q <= D;

end

endmodule

DFF with Synchronous Reset
Positive-Edge-Triggered, Reset is Active High

▪ On the rising edge of the CLK
• Clear (reset) signal is evaluated

• If high, output is cleared (zero)

• Else, the output is unchanged

• Here, reset is active when high

▪ If we wanted a negative-edge
triggered DFF
• Replace posedge CLK

with negedge CLK

59CS-173, © EPFL, Spring 2025

module Dff (
input D,
input CLK,
input CLR,
output reg Q
);

always @ (posedge CLK)
if (CLR == 1)
Q <= 0;

else
Q <= D;

endmodule

DFF with Asynchronous Reset
Positive-Edge-Triggered, Reset is Active High

▪ The sensitivity list now includes
the reset input CLR
• Whenever CLR is to be asserted (rising),

the always block executes, and the if
statement clears the Q output and exits

• If the always block is executing and CLR
was not asserted, then it must be
executing because a positive edge
occurred on CLK, and therefore,
Q takes D

60CS-173, © EPFL, Spring 2025

module Dff (
input D,
input CLK,
input CLR,
output reg Q
);

always @ (posedge CLK or posedge CLR)
begin
if (CLR == 1)

Q <= 0;
else

Q <= D;
end

endmodule

DFF with Asynchronous Reset
Positive-Edge-Triggered, Reset is Active High

▪ Why posedge CLR?

▪ It would be a mistake to omit
posedge and execute always block
on any change in CLR
• Problem: On a '1'-to-'0' transition on

CLR, the else clause would execute
and set Q to D even though no CLK
edge had occurred

61CS-173, © EPFL, Spring 2025

module Dff (
input D,
input CLK,
input CLR,
output reg Q
);

always @ (posedge CLK or posedge CLR)
begin
if (CLR == 1)

Q <= 0;
else

Q <= D;
end

endmodule

DFF with Asynchronous Reset and ~Q Output
Positive-Edge-Triggered, Reset is Active High, Contd.

62CS-173, © EPFL, Spring 2025

module Dff (
input D, CLK, CLR,
output reg Q, QN
);

always @ (posedge CLK or posedge CLR)
begin
if (CLR == 1) begin

Q <= 0;
QN <= 1; // complementary output

end
else begin

Q <= D;
QN <= ~D; // complementary output

end
end

endmodule

▪ Asynchronous reset

▪ Two FF outputs
• Original, Q

• Complementary (negated)

CS-173, © EPFL, Spring 2025 63

Practically Useful Notes

64CS-173, © EPFL, Spring 2025

65

Avoid Latches

▪ For practical sequential systems, avoid latches
• Latches are sensitive to glitches (hazards)

• Latch outputs can oscillate

• Latches are level (not edge!) sensitive and may change
output many times during one clock period

▪ Use only D flip-flops and combinational logic
• Write independent always blocks

• Some dedicated to D flip-flops (keep them extremely simple)

• Some dedicated to combinational logic (as complex as needed)

CS-173, © EPFL, Spring 2025

66

Beware, Latches can Sneak In

▪ To avoid latches to sneak in in your combinational
circuits, make sure to assign every wire that
can be assigned inside your always@(*) block

▪ Recommended practice:
• Start your always@(*) block with the initialization of all

wires to some default logic values to ensure they all
take a value (1 or 0) regardless of the code that follows

• Only afterward proceed with your desired assignments

CS-173, © EPFL, Spring 2025

67

Nonblocking Assignments

▪ Always use nonblocking assignments in sequential
always blocks (nonblocking assignment operator <=)

• Why?

In models with multiple sequential always blocks using blocking
assignments, the simulation results can vary depending on the order
in which the simulator chooses to execute those blocks. Using
nonblocking assignments ensures that the righthand sides of all
assignments are evaluated before new values are assigned to any of
the lefthand sides. This makes the results independent of the order in
which the righthand sides are evaluated

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025 68

69

Literature

CS-173, © EPFL, Spring 2025

▪ Chapter 5: Fli-flops, Registers, and
Counters
▪ 5.1-4, 5.12, 5.13

▪ Chapter 10: Latches and Flip-Flops in Verilog
▪ 10.3.2, 10.4.2

▪ Verilog: always@ Blocks by Chris Fletcher:
https://inst.eecs.berkeley.edu/~eecs151/fa19/files/verilog/always_at_blocks.pdf

https://inst.eecs.berkeley.edu/~eecs151/fa19/files/verilog/always_at_blocks.pdf

